
https://www.jefjournal.org.za Open Access

Journal of Economic and Financial Sciences 
ISSN: (Online) 2312-2803, (Print) 1995-7076

Page 1 of 12 Original Research

Read online:
Scan this QR 
code with your 
smart phone or 
mobile device 
to read online.

Authors:
Clive E. Coetzee1 
Ewert P.J. Kleynhans2 

Affiliations:
1TRADE Research Entity, 
Faculty of Economic and 
Management Sciences, 
North-West University, 
Potchefstroom, South Africa

2School of Economics, 
Faculty of Economic and 
Management Sciences, 
North-West University, 
Potchefstroom, South Africa

Corresponding author:
Ewert Kleynhans,
epjkleynhans@gmail.com 

Dates:
Received: 21 Aug. 2020
Accepted: 11 Nov. 2020
Published: 17 Mar. 2021

How to cite this article:
Coetzee, C.E. & 
Kleynhans, E.P.J., 2021, 
‘Remote night-time lights 
sensing: Investigation and 
econometric application’, 
Journal of Economic and 
Financial Sciences 14(1), 
a613. https://doi.
org/10.4102/jef.v14i1.613

Copyright:
© 2021. The Authors. 
Licensee: AOSIS. This work 
is licensed under the 
Creative Commons 
Attribution License.

Introduction
This article focuses on examining the economics and economic application of the remote sensing 
of night-time light (NTL) emissions using satellite technologies within the South African context. 
Levin et al. (2020) argue that the use of NTL emissions in the visible band offers a unique 
opportunity to directly observe human activity from space. They further argue that numerous 
applications of remotely sensed NTLs may be found in the field of economics. Although some 
studies have been conducted internationally, such a study has not yet been conducted within a 
South African context. It, therefore, promises to open a new field of study within the South African 
context. The study also applies several econometric techniques not utilised in previous studies.

Remote sensing products such as NTL emissions are primarily derived from satellite sensors. Two 
sensors have been collecting NTL emissions from as early as the mid-1970s up to the present. 
However, the actual data have only been released since 1992. The United States of America (USA) 
Air Force Defence Meteorological Satellite Program (DMSP) operated the Linescan satellite system 
(Operational Linescan System [OLS]) originally until 2013. In 2011, the National Aeronautics and 
Space Administration (NASA) and the National Oceanic and Atmospheric Administration 
(NOAA) launched the Suomi National Polar Partnership (SNPP) infrared imaging radiometer 
suite (Visible Infrared Imaging Radiometer Suite [VIIRS]) as the DMSP successor (Jeswani 2018). 

Continuous time-series data of global remote sensing now span from 1992 up to the present; 
however, using two different systems that, to some degree, are not 100% compatible. This is 
because the VIIRS system is a significant upgrade to the OLS system. Nonetheless, there are also 
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significant similarities between the two systems to allow for 
the development of a continuous time series of NTL 
emissions. The data can be expressed in several different 
formats, for example, in GeoTiff (raster), shapefile (vector) or 
statistics file format. This allows for both visual and 
quantitative analysis and display of data. 

Both the OLS and the VIIRS systems can detect artificial 
lighting, that is, NTL that can be interpreted as a measure of 
human activity. Both systems have a built-in manipulation 
system, through calibration and algorisms, for example, to 
exclude natural light so that the end product only consists of 
man-made or artificial light. Night-time light now seems to 
be widely used as a proxy for other more difficult measure 
variables, for example, gross domestic product (GDP) at a 
granular level, granular poverty levels, informal economic 
activity and remittances, human ecological footprint, and 
electrification rates, to name but a few (Ghosh et al. 2010). 
Also, see Bauer (2020) and Levin et al. (2020). Applications 
can be related to environmental factors, human activities and 
their impacts. According to Jeswani (2018), many studies 
have shown the possibility of correlations between NTL and 
several known demographic and economic variables.

The attraction for using the NTL stems from the objectivity, 
consistency, cost-effectiveness, timeliness and spatial nature 
of the data. To this end, Goldblatt et al. (2016) argue that the 
use of satellite remote sensing is now a key methodology in 
economics and other applied scientific research. This is 
especially true for countries with poor national accounts 
data. Bhandari and Roychowdhury (2011) went further 
stating that NTLs have been used as a proxy to study 
economic activities for the past 20 odd years. 

Unfortunately, as with most, if not all sources, remote sensing 
NTL data also have some constraints. For example, satellites 
cannot detect light used inside a high capital intensive 
production plant, whether mostly empty or running at full 
capacity. Satellites also cannot distinguish between a light 
emitted from an office compared to an apartment building. 
To this end, Mellander et al. (2015) expressed some concern 
about the extent of the relationship between NTL emissions 
and economic activity at a micro-level.

With these premises, that is, the possible economic applications 
of satellite remote sensing NTLs in mind, the remainder of the 
article is structured as follows. Section ‘Literature review of 
remote sensing NTL data’ is devoted to briefly discuss recent 
theoretical and empirical research regarding the initiation of 
NTL remote sensing and its progress throughout, especially 
from an economic perspective. Fairly detailed background on 
the origins and history of remote sensing of NTL data is 
supplied in Section ‘Origins and history of remote sensing of 
NTL data’. Section ‘Mapping NTLs for South Africa’ includes 
a basic account of the nature and detail of NTL maps as well 
as the development of NTL maps for South Africa. The focus 
of Section ‘Inquiry into NTLs for South Africa’ is on a 
descriptive inquiry into NTLs for South Africa, while Section 

‘Theoretical underpinnings and principles’ focuses on the 
theoretical principles underlying the possible relationship 
between NTLs and economic performance. Section ‘NTLs 
and economic performance of South Africa’ endeavours to 
conduct an empirical investigation into the relationship 
between NTLs and economic performance within the South 
African context. Finally, Section ‘Conclusions’ provides the 
conclusion.

Literature review of remote sensing 
night-time light data
Some studies have been published that attempt to demonstrate 
relationships that provide insight into the value of using 
remote sensing NTLs as descriptors and/or proxies for 
human activity. Given that the release of the global NTLs 
data is fairly recent, the first studies had also just commenced. 
The initial uptake was very modest but recently experienced 
a significant increase. Furthermore, over recent years, a 
proliferation of focus areas of studies has become noticeable. 
From an economic point of view, studies can be found 
incorporating global, national and micro-levels. 

The discussion herein will only focus on the literature related 
to the field of economics because the focus of this study will 
be economic by nature. It is relevant to note that there is two 
broad field of studies, that is, studies aimed at identification 
and development of methods to improve the datasets and to 
extract the information from the datasets, both quantitatively 
and quantitatively. The second set of studies is application-
oriented and it is on the second set of studies that the 
literature review will focus on.

Croft’s (1978) study seems to be the first one to explore the 
NTLs economic nexus. The study draws some positive 
conclusions on the relationship between NTLs and human 
development and settlement. Doll, Muller and Morley (2006), 
Ebener et al. (2005), Sutton and Costanza (2002), and Sutton, 
Elvidge and Ghosh (2007) further support Croft’s (1978) 
conclusions that show that NTLs reflect human activity.

During 1997, Elvidge et al. published an article that found a 
‘strong’ relationship between GDP and NTLs. Ghosh et al. 
(2010) also found that NTLs are very effective in GDP 
estimations, especially when it comes to countries lacking 
statistical structures and resources. Elvidge et al. (2017) 
found a coefficient of determination of 0.97 whilst performing 
a GDP regression analysis of 21 countries and DMSP NTLs. 

Goldblatt et al. (2016) argued that Henderson, Storeygard 
and Weil (2012) pioneered the use and application of NTLs as 
a useful proxy for economic activity. Henderson et al. (2012) 
raised concerns about the inability of many countries, and in 
particular, developing countries to not or at best poorly 
measure economic variables such as GDP and economic 
growth (Kleynhans & Coetzee 2017). The study further 
suggests that economic variables are rarely measured at all 
for cities or subnational regions. The authors developed a 
statistical framework incorporating remote sensing NTLs 
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into the national accounts system to supplement existing 
economic variables. The results of their empirical work 
suggest that ‘empirical growth’ no longer needs to be 
synonymous with ‘national income accounts’. 

Omar and Ismal (2019) argue that their article was the first to 
study the relationship between NTLs and real GDP at the 
national and subnational levels using sub-national data for 
Egypt. Indeed, they found a statistically significant positive 
correlation between NTLs and real GDP at both levels. They 
state further that NTLs can be a good proxy for GDP 
(at various levels), especially in the absence of reliable official 
data. Omar and Ismal (2019) found a great deal of support in 
the literature, for example, Chen and Nordhaus (2011), 
Ebener et al. (2005), Elvidge, Chi-Hsu and Ghosh (2014), 
Henderson et al. (2012), and Kulkarni et al. (2011). 

Ghosh et al. (2010) went further than just focusing on GDP, 
stating that NTLs can be used to develop several proxy 
measures for human well-being. The study investigates some 
possible NTLs applications, for example, measuring areas of 
poverty and population in poverty, estimating informal 
economic activity and remittances, measuring the distribution 
of wealth by developing a night light development index, 
mapping and monetising the human ecological footprint, 
estimating access to electricity and estimating the information 
and technology development index. The authors explicitly 
argue that all these measures of well-being can be solely 
derived from NTLs and population density.

The wide application benefit of NTLs, as suggested by Ghosh 
et al. (2010), is further supported by Rayner et al. (2010), who 
looked at fossil fuel carbon emissions; Doll (2008) and Sutton 
(1997) used it to estimate and map the spatial distribution of 
the population; Elvidge et al. (2009) for poverty mapping; 
Elvidge et al. (2007) for estimating the density of constructed 
surfaces; Matsumura et al. (2009) for measuring and spatially 
mapping food demand; Zhao et al. (2011) for water use; and 
Hsu, Elvidge and Matsuno (2013) for stocks of steel and other 
metals. 

Origins and history of remote 
sensing of night-time light data
During the 1960s, the Air Force of the United States of 
America (USA) initiated a new project called the DMSP. The 
original purpose of the programme was to detect moonlit 
clouds and weather data to support the USA Department of 
Defence (DoD). As from 1976, the satellites have included a 
weather sensor, the OLS, and have been circling the earth 
14 times per day recording the intensity of Earth-based lights.

The OLS consists of two sensors, one operating in the visible, 
near-infrared (400 nanometres [nm] – 1100 nm) spectrum and 
the other operating in the thermal infrared (10.5 nm – 12.6 
nm) domain. Each detector has a field of view of 3000 
kilometres (km) and captures images at a resolution of 
approximately 0.56 km (Pestalozzi, Cauwels & Sornette 
2013). The satellites are typically in low altitude (830 km) 

sun-synchronous polar orbits with an orbital period of 101 
min. With 14 orbits per day, they generate a global night-time 
and daytime coverage of the Earth every 24 h. Each satellite 
observes every location on the planet every night at some 
instant between 20:30 and 22:00 local time.

The USA Air Force DMSP–OLS has been the only satellite 
system collecting global low-light imaging data for more 
than 40 years. A series of 24 DMSP satellites collected 
low-light imaging data. However, because of several 
shortcomings and as a result of satellite orbit degradation, 
the DMSP ended in 2013. In 2011, the NASA and the NOAA 
launched the SNPP satellite carrying the first VIIRS 
instrument. The VIIRS was designed to collect high-quality 
radiometric data for digital analysis and input into numerical 
models. The VIIRS instrument includes a day/night band 
(DNB), which collects standard panchromatic image data by 
day and low light imaging data at night (Wu et al. 2013). 

Omar and Ismal (2019) state that satellites’ images have been 
systematically digitised at the NOAA’s National Geophysical 
Data Centre (NGDC) since 1992. Each satellite-year dataset is 
a grid reporting the intensity of lights as a six-bit (DMSP–OLS 
system) and 14-bit (SNPP–VIIRS system) digital number 
(DN), for every 30 arc-second output pixel (approximately 
0.86 km2 at the equator) spanning -180° to 180° longitude and 
-65° to 75° latitude (EOG 2020 & NOAA 2020). 

The raw data generated from both the DMSP–OLS and 
the SNPP–VIIRS systems have been made public in 1992. 
The DMSP-OLS data are available from the NOAA 
website (https://ngdc.noaa.gov/eog/dmsp/downloadV4 
composites.html) from 1992 to 2013 covering their different 
satellites on an annual basis. The SNPP–VIIRS data are 
available from the Earth Observations Group (EOG) website 
(https://eogdata.mines.edu/download_dnb_composites.
html) from 2012 to 2019 on both a monthly and annual basis. 

The DMSP data are cloud-free composites made using all the 
available archived DMSP–OLS smooth resolution data for 
each calendar year and exclude several natural phenomena, 
including sunlit, glare, moonlit, clouds and lightning. The 
SNPP–VIIRS data are also filtered to exclude data impacted 
by stray light, lightning, lunar illumination and cloud cover. 

For each of the DMSP–OLS composites, a product called 
Stable Lights is available. In this product, fires and other 
ephemeral lights are removed, based on their high brightness 
and short duration. In the final result, each pixel quantises 
the 1-year average of stable light in a 6-bit data format. The 
pixel values, called DN, are integers ranging between 0 and 
63. In the case of the SNPP–VIIRS composites, several 
products are available, that is, VIIRS Cloud Mask, VIIRS 
Cloud-Mask-NTLs, VIIRS Cloud Mask, Outlier Removed 
and VIIRS Cloud Mask, Outlier Removed, NTLs, of which 
the last product is the preferred product. 

The final results contain pixels that quantise the monthly or 
annual average of the VIIRS Cloud Mask, Outlier Removed, 
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NTLs and other products, in a 14-bit data format, also called 
DN, but with no upper limit, with integers ranging from zero 
to infinity. The DN represents the man-made light intensity 
of the particular pixel with a value of 0 referring to no light 
(EOG 2020 & NOAA 2020).

Elvidge et al. (2013) found some significant differences 
between the DMSP–OLS and SNPP–VIIRS composites. 
Figure 1 shows a side-by-side comparison of the average 
SNPP versus the average DMSP for the island of Oahu, 
Hawaii. The SNPP product shows substantially more spatial 
detail. Furthermore, the DMSP data have saturation (white 
pixels) centred on the major urban areas. The background 
areas with no detected lighting appear black on the SNPP 
product and as a ‘salt and pepper’ noise in the DMSP. Jing 
et al. (2015) support Elvidge et al. (2013) in that the SNPP 
products contain significant advantages over the DMSP 
product; however, not rejecting the significance of the use of 
the DMSP product in any case.

Henderson et al. (2012) state that the intensity of night lights, 
as measured by the DN, reflects outdoor and some indoor 
man-made light and that this has possible significant 
economic applications.

Mapping night-time lights for 
South Africa
In Figures 2–5, unlit areas are black, and lights appear with 
intensity increasing from black, red, yellow to white. Black 
areas are represented by the DN number increasing from 0 to 
63 or infinity from grey to white.

Figures 2 and 3 indicate NTLs for South Africa at two points 
in time, that is, 1992 and 2013, indicating scales of man-made 
light from the DMSP–OLS system. The significant increases 

in man-made light for the Johannesburg–Pretoria region, the 
Mpumalanga region and the coastal regions are visible. On 
the contrary, the interior of the country seems to have 
experienced very little increase in man-made light over the 
period. Figures 4 and 5 show the NTLs from the SNPP–VIIRS 
system for 2013 and 2019. Again, the increases in man-made 
light for the regions, as indicated above, are visible, but not to 
the same extent. 

The DMSP satellites operated until 2013, whereas the SNPP 
satellites started in 2012 but the SNPP–VIIRS system is not 
directly compatible with the DMSP–OLS system as 
highlighted in several studies (Jing et al. 2015). Although 
there seems to be a continuous series of night-time data, the 

Source: Elvidge, C.D., Baugh, K.E., Zhizhin, M. & Hsu, F.C., 2013, ‘Why VIIRS data are superior to DMSP for mapping night time lights’, Proceedings of the Asia-Pacific Advanced Network 35, 62. 
https://doi.org/10.7125/APAN.35.7 

FIGURE 1: Suomi National Polar Partnership–Visible Infrared Imaging Radiometer Suite (a) versus Defence Meteorological Satellite Program–Operational Linescan System 
(b) cloud-free composited average visible band images of Oahu, Hawaii. 

a b

Source: National Oceanic and Atmospheric Administration (NOAA), 2020, DMSP-OLS 
nighttime lights time series, viewed 11 November 2020, from https://ngdc.noaa.gov/eog/
dmsp/downloadV4composites.html; Authors’ analysis.

FIGURE 2: Defence Meteorological Satellite Program–Operational Linescan 
System night-time lights South Africa, 1992. 
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two series are not directly compatible. Fortunately, 2 years 
of overlapping datasets are available. Figures 3 and 4 
display the South African night-time nights for 2013 for 
both systems. Some clear differences are observable, mostly 
related to the saturation characteristic of the DMSP–OLS 
system. 

The presence of man-made light, as displayed in these four 
figures, suggests that the majority of South Africans live in a 
few cities and that these cities have expanded significantly 
over this period, while a large part of South Africa is very 
sparsely populated. This also seems true for the South African 
economy. The increasing concentrations of people and 
economic activity over this period are highlighted through 
these figures. 

Inquiry into night-time lights for 
South Africa
This section focuses on some preliminary empirical work on 
the South African NTL view. The first step is to construct an 
annual series of nightlight data from 1992 to 2018, by linking 
the annual DMSP–OLS and SNPP–VIIRS data at the national 
level. According to Beyer et al. (2018), one possible method 
is to exploit the overlap between the two data sources in 
2013; however, in this case, the average overlap between the 
two data sources in 2012 and 2013 will be used. 

The 2012 and 2013 data from the two sources are displayed in 
Table 1. The first 2012 and 2013 rows display data from the 
DMSP–OLS system, while, in the second 2012 and 2013 rows, 
the data from the SNPP–VIIRS system are displayed. The 
2012 and 2013 overlap rows display the DMSP–OLS data 
divided by the SNPP–VIIRS data, while the average overlap 
row displays the average 2012 and 2013 overlap data. The 
SNPP–VIIRS data (2014–2018) are then adjusted using the 
average overlap number as displayed in the table. 

This method is possible because both sources generate data 
in the same frequency, and they describe one phenomenon 
and there is no time gap between them. A word of caution 
may be relevant in that this method may not be most optimal 
because the underlying data generating processes between 
the two systems are significantly different, that is, the method 
of measurement has changed between both time series. The 
most obvious difference is the upper limit characteristic of 
the DMSP–OLS data. To address some of the shortcomings 
listed earlier, Jeswani (2018) suggests possibly using 
logarithmic and/or power function methods for the 
intercalibration between DMSP–OLS and SNPP–VIIRS. 

The average annual DN value of the NTLs (avelight) for 
South Africa for the period is displayed top left in Figure 6. 

Source: National Oceanic and Atmospheric Administration (NOAA), 2020, DMSP-OLS 
nighttime lights time series, viewed 11 November 2020, from https://ngdc.noaa.gov/eog/ 
dmsp/downloadV4composites.html; Authors’ analysis.

FIGURE 3: Defence Meteorological Satellite Program–Operational Linescan 
System night-time lights South Africa, 2013. 

Source: Sharing Earth Observation Resources, 2020, Suomi National Polar Partnership 
(SNPP), viewed 11 November 2020, from https://directory.eoportal.org/web/eoportal/
satellite-missions/content/-/article/suomi-npp-part-1; Authors’ analysis.

FIGURE 4: Suomi National Polar Partnership–Visible Infrared Imaging 
Radiometer Suite night-time lights South Africa, 2013. 

Source: Sharing Earth Observation Resources, 2020, Suomi National Polar Partnership 
(SNPP), viewed 11 November 2020, from https://directory.eoportal.org/web/eoportal/
satellite-missions/content/-/article/suomi-npp-part-1; Authors’ analysis.

FIGURE 5: Suomi National Polar Partnership–Visible Infrared Imaging 
Radiometer Suite night-time lights South Africa, 2019. 
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Top right and middle left display the average annual number 
of pixels with DN values greater than 0 (countlight) and the 
average annual total intensity of all the DN pixels with a 
value greater than 0 (sunlight). Middle right in the panel 

displays the average annual total intensity of all the DN 
pixels with a value greater than 0 (sum) per total area 
(lightkm). Bottom right in the panel displays the average 
annual total intensity of all the DN pixels with a value 
greater than 0 (sum) per person (lightpop). Bottom left 
displays the average annual total intensity of all the DN 
pixels with a value greater than 0 (sum) per total national 
GDP (lightgdp). 

Studying the descriptive statistics of the various NTL-related 
statistics, it can be inferred that the p-values (Jarque–Bera 
test) suggest that the data of the variables are normally 
distributed (p > 0.05).

Table 2 shows the unit root tests results (probability of the 
t-statistic) of the various NTL-related variables. Comparing 

FIGURE 6: Night-time lights variables for South Africa, 1992–2019. (a), AVELIGHT; (b), COUNTLIGHT; (c), SUMLIGHT; (d), LIGHTKM; (e), LIGHTGDP and (f), LIGHTPOP.
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TABLE 1: Overlap between the two data sources in 2012 and 2013.
Year Average Count Max Median Sum

2012 16.45905 100 952 63 11 1 661 574
2013 16.25813 97 372 63 10 1 583 087
2012 9.725901 136 305 5770 4 1 325 689
2013 10.19368 144 530 3293 5 1 473 292
2012 overlap 1.69229 0.740633 0.010919 2.75 1.253366
2013 overlap 1.594924 0.673715 0.019131 2.00 1.074524
Average overlap 1.643607 0.707174 0.015025 2.375 1.163945

Source: National Oceanic and Atmospheric Administration (NOAA), 2020, DMSP-OLS 
nighttime lights time series, viewed 11 November 2020, from https://ngdc.noaa.gov/eog/
dmsp/downloadV4composites.html, and Sharing Earth Observation Resources, 2020, Suomi 
National Polar Partnership (SNPP), viewed 11 November 2020, from https://directory.
eoportal.org/web/eoportal/satellite-missions/content/-/article/suomi-npp-part-1; Authors’ 
analysis.
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https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html


Page 7 of 12 Original Research

https://www.jefjournal.org.za Open Access

the Augmented Dickey–Fuller (ADF) test statistics of the 
level and the difference variables with the critical test 
values at the one per cent level suggests that all the 
variables or time series are indeed stationary in the 
differenced format. The results suggest that the differenced 
variables are stationary and therefore integrated to the 
order of 1 or I (1).

Inspecting the graphs of the frequency distribution of 
the DN pixels with a value greater than 0 for the period 
1992–2013 (DMSP–OLS system) and DN pixels with 
a value greater than 0 for the periods 2012–2019 
(SNPP–VIIRS), it is found that the majority of pixels with 
DN values greater than 0 have DN values of less than 7 and 
5. There also seems to be two sets of pixels with DN values 
greater than 0 in each of the systems, that is, in the range 2–7 
and 11–20. Pixels with DN values greater than 40 are very 
limited. This suggests that there are large parts of the 
country with very low NTLs, significant parts with fairly 
high NTLs and very small parts with extreme night-time 
emissions.

Table 3 displays the frequency distribution of the DN pixels 
for the periods 2012 and 2013 of the data sourced from the 
DMSP–OLS system (OLS) and SNPP–VIIRS systems (VIIRS). 
It shows some significant differences within the lower 
frequencies (1–3) and higher frequencies above 60. However, 

the frequency distributions between 5 and 60 seem fairly 
similar between the two systems.

Theoretical underpinnings and 
principles
Doll et al. (2006) tested the linearity of the log–log relationship 
between country-level GDP at purchasing power parity and 
total lit area all over the world, using the data in 1994 and 
1995, and obtained a coefficient of determination of 0.85 for 
the regression. Ghosh et al. (2010) linearly regressed PPP-
GDP and sum of lights (SOL) globally in 2006 and found an 
R2 of 0.73.

Henderson et al. (2012) suggest that the relationship between 
the growth of lights and the growth of true income is given by

xj = ßyj + εx,j

where y is the growth (or log difference) in true real GDP; x is 
the growth of observed light, with a variance of εx. 

An important assumption underlying the specification is 
that there is a simple constant elasticity relationship between 
total observable lights (X) and total income (Y): Xj = Yß

j, where 
ß is the elasticity of lights concerning income. 

Wu et al. (2013) also presumed that amount of lights is an 
increasing function of the corresponding GDP, and define it 
specifically as a power function, namely, a log-linear 
relationship between GDP and amount of lights.

light = ϕ(GDP) = k·GDPα

where parameter k is not a constant but is determined by 
some factors other than GDP. A major concern raised by Wu 
et al. (2013) is the components of k. Gross domestic product 
per capita would be a probable factor, as a higher income per 
capita always leads to higher consumption of normal goods, 
and light is seemingly a kind of normal goods. Latitude 
would also be a possible factor that affects parameter k for its 
potential influence on residences’ demands for light. Another 
element that requires close attention is the degree of spatial 
concentration or dispersion of human activities, which is 
closely related to the degree of urbanisation.

Beyer et al. (2018) used similar specifications as Henderson 
et al. (2012), estimating the elasticity of GDP for nightlight 
intensity in the world and South Asia as 

ln(GDPc,t) = a + bc + ct + δln(lintensityc,t) + εc,t,

where ln(GDPc,t) is the natural logarithm of GDP of country c 
in year t measured in constant local currency, ln(lintensityc,t) is 
the natural logarithm of light brightness per km2, bc is a 
country fixed effect and Ct is a year fixed effect.

Omar and Ismal (2019) state that unlike Chen and Nordhaus 
(2011), who studied the relationship between GDP growth 
and NTL growth, they investigate the relationship at the 
variables’ levels. A very important assumption underlying 

TABLE 3: Frequency distribution of the digital number pixels with a value greater 
than 0 for the period 2012 and 2013.
Bin 2012 VIIRS 2012 OLS 2013 VIIRS 2013 OLS

1 26 535 183 26 403 145
3 33 149 21 35 321 29
5 17 183 14 453 18 187 15 510
7 10 996 17 026 11 729 16 242
9 7872 12 892 8258 12 170
11 6080 9172 6438 8791
15 8994 12 144 9357 11 428
20 8162 9406 8564 8805
30 9229 10 263 10 084 9566
40 4043 5942 4793 5612
50 1906 4397 2451 4149
60 875 4152 1264 3919
70 473 901 623 1006
80 250 0 335 0
90 138 0 211 0
100 77 0 109 0
More 343 0 403 0

VIIRS, Visible Infrared Imaging Radiometer Suite; OLS, Operational Linescan System.

TABLE 2: Summary of the unit root tests results of the various night-time light-
related statistics.
Test 
included

Level (probability) First difference (probability)

Intercept Intercept 
and trend

None Intercept Intercept 
and trend

None

Avelight 0.6303 0.1481 0.733 0.0034 0.0138 0.000
Countlight 0.4554 0.0015 0.954 0.00 0.00 0.00
Sumlight 0.6458 0.0054 0.917 0.00 0.00 0.00
Lightpop 0.0046 0.0052 0.727 0.00 0.00 0.00
Lightkm 0.6458 0.0054 0.917 0.00 0.00 0.00
Lightgdp 0.0350 0.0157 0.4774 0.00 0.00 0.00

Note: p < 0.05 accepts the alternative hypothesis of no unit root.

https://www.jefjournal.org.za�
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the theoretical model is the existence of a structural 
relationship between the true GDP and observed NTL with 
constant elasticity, signifying that observable lights increase 
at the same rate as economic performance. Making the 
coefficients’ interpretation with elasticity, they used the log–
log equation: 

ln(GDPit) = α0 + βln NTLit + μit

where μit is the error term of predicting the observed GDP 
using observed NTL.

Omar and Ismal (2019) use stable light dataset. Three 
variables are extracted: the SOL, which is the sum of the 
multiplication of location’s pixels by its digital value of light’s 
intensity; top-coded cells where the top is the number of 
pixels that are the highest light with DN 62 and 63; and the 
unlit-coded cells unlit variable indicates the number of pixels 
that are dim with DN 0–6. The model is estimated in a panel 
data structure.

Hu and Yao (2019) suggest that because the correlation 
between NTLs and GDP is decreasing with income levels, 
their relationship could be nonlinear. Their study investigates 
the relationship between night-light intensity (NTLt) and real 
GDP per capita. The relationship is estimated using ordinary 
least square regressions, including a nonlinear term.

Lopez-Ruiz, Blazquez and Hasanov (2019) regress GDP 
(GDPt) on nationwide night-light intensity (NTLt) in 
logarithmic form, to see how well the latter can explain the 
former, using: 

GDPt = α0 + α1 NTLt + εt

From the above, it is relevant to investigate the relationship 
using a log–log estimation technique considering constant 
elasticity between economic growth and NTL growth. 
The estimation can be performed either in level or in growth 
format using GDP or GDP per capita as the dependent 
variable. It may also be relevant to test for nonlinearity. In 
terms of the NTL variable, it is possible to use only one or 
several derived variables, for example, the SOL on its own or 
in combination with other derived NTL variables. 

Night-time lights and economic 
performance of South Africa
This section investigates the ability to assess the economic 
performance of South Africa using light emissions recorded 
by satellite and reported on the Internet. The behaviour of the 
GDP per capita, total light intensity (total intensity of all the 
DN pixels with a value greater than 0) and the number of 
pixels that are dim with DN 0–5 over the period 1992–2019 
(in natural logarithm scale) are displayed in Figure 7. Some 
correlation between the GDP per capita and total light 
intensity variables seems to be present (Figure 8). The 
smoothing is done using a Kernel, such as the Kernel K or an 
Epanechnikov kernel. Estimating the regression fit is done 
using the Nadaraya–Watson method. The possible 
nonlinearity of the relationship also seems evident given the 

flat slope of the relationship at the higher values. This is 
because of the saturation of DN values at the high bound, 
remembering that the DN values are capped at 63 using the 
DMSP–OLS system. Gross domestic product per capita will 
be used as a proxy for economic performance, whilst total 
light intensity will be represented by the sum of NTL variable. 
The unlit-coded cells unlit variable indicating the number of 
pixels that are dim with DN 0–6 will be used as a control 
variable because this variable controls for the blooming effect 
associated with NTLs. 

Zou (2018) argues that the use of the vector error correction 
model (VECM) can be used to establish the relational model 
amongst economic variables in a non-structural way. The VECM 
methodology is adopted within this study predominantly 
because the variables under consideration are not stationary in 

LNGDPCAPITA, log GDP per capita; LNSUMLIGHT, log total light intensity; LNBCOUNT, the 
number of pixels that are dim with DN 0–5. 

FIGURE 7: Gross domestic product per capita and total light intensity, 1992–2019. 
(a), LNGDPCAPITA; (b), LNSUMLIGHT and (c), LNBCOUNT.
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their levels but are in their differences and the variables are 
assumed to be cointegrated. The results of the commonly 
accepted ADF as presented in Table 2 and performed on GDP 
and bcount (in natural logarithmic format) show that level 
value of the three variables is nonstationary, and a further test 
indicates differenced values of the three variables are first-order 
difference stationary, that is I(1).

The three variables VECM are then integrated into the same 
order of 1: 

Yt i Yt i i Xt i zt iln ln ln ,t
i

n

i

n

0
01

∑∑β β µ∆ = + ∆ − + δ ∆ − + ϕ − +
==

where ln Yt is the real GDP per capita at period t, lnX is the 
total light intensity at period t (lnLt) and the number of 
pixels that are dim with DN 0–5 at period t (lnCt); μt is the 
stationary error term; z is the error correction term and is 
the ordinary least square residuals from the long-term 
cointegration regression:

Yt = Xt + tln 0 + 1lnβ β ε

and is defined as:

zt ECTt Yt Xt1 1 ln 1 0 1ln 1β β− = − = − − − −

The Akaike information criterion (AIC) within a vector 
autoregressive model (VAR) was used to determine the 
optimal lag period for South Africa. It was found that the 
optimal lag order for the VAR model is 4 (AIC 4) = 
-7.623296*, where the * indicates the lag order selected by 
the criterion). Estimating the VECM, it is important to 
include p–1 lags where p is the lag order selected by the 
criterion. Testing the stationarities of VAR model via the 
mod of AR characteristic root reciprocal of the VAR model 
indicates that the mod of reciprocal of each characteristic 

root lies inside the unit circle. That implies that the lag order 
of 4 is appropriate, and the established VAR model is stable 
after going through a stability test.

The Johansen cointegration test on the three variables 
(Table 4) shows that, in both trace and maximum eigenvalue 
tests, under the 5% level (test results are to accept the null 
hypothesis) positive relationships exist for South Africa’s 
GDP. This means there are stable and long-term equilibrium 
relationships amongst the variables. On the premise of the 
existence of cointegration relationships, VEC modelling can 
be further conducted.

Estimating the VECM yields the result given in Table 5. The 
cointegration equation therefore is:

∆lnYt − 1 = 2.763816 + 0.748619lnLt−1 − 0.252327lnCt−1

From this equation, it can be seen that other things equal, 
each percentage-point increase in total light intensity will 
cause an increase of 0.75 percentage points in GDP per capita, 
and each percentage-point increase in the number of pixels 
that are dim with DN 0–5 will cause a decrease of 0.25 
percentage points in GDP per capita.

The results of the VECM yield the following in terms of the 
error correction mechanism (Table 6). Although the sign of 
the error correction term is indeed negative as per the 
economic theory, the term is not statistically significant (t < 2). 
This indicates that there does not seem to be a statistically 
significant short-term causality between the GDP per capita 
and total light intensity.

LNGDPCAPITA, log GDP per capita (vertical axis); LNSUMLIGHT, log total light intensity 
(horizontal axis). 

FIGURE 8: Kernel assessment of gross domestic product per capita and total 
light intensity. 
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TABLE 4: Results of the cointegration test.
Hypothesised 
no. of CE(s)

Eigenvalue Trace 
statistic

Maximum 
eigen statistic

0.05
Critical value

Prob.**

Unrestricted cointegration rank test (trace)
None* 0.717031 48.29661 - 29.79707 0.0001
At most 1* 0.417622 17.99857 - 15.49471 0.0205
At most 2* 0.188852 5.023307 - 3.841466 0.0250
Unrestricted cointegration rank test (maximum eigenvalue)
None* 0.717031 - 30.29805 21.13162 0.0020
At most 1 0.417622 - 12.97526 14.26460 0.0791
At most 2* 0.188852 - 5.023307 3.841466 0.0250

Note: Trace test indicates 3 cointegrating equation(s) (CE) at 0.05 level. Max-eigenvalue test 
indicates 1 cointegrating equation(s) at 0.05.
*, Rejection of the hypothesis at 0.05.
**, MacKinnon-Haug-Michelis (1999) p-values.

TABLE 5: Results of cointegration equation.
Cointegrating 
eq.

CointEq1 Standard error t-statistic

lnY(t–1) 1.000000 - -
lnL(t–1) -0.748619 0.07152 -10.4679
lnC(t–1) 0.252327 0.09025 2.79574
C -2.763816 - -

TABLE 6: Vector error correction model estimation results and test.
Error 
correction

D(LNGDPCAPITA) Standard error t-statistic

CointEq1 -0.015656 0.06810 -0.22989

LHGDPCAPITA, log GDP per capita.

https://www.jefjournal.org.za�
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The estimated VECM, therefore, is: 

∆lnYt = -0.015656Zt–1 + 0.598921*∆lnYt–1 + 0.185419*∆lnYt–2 – 
0.0363115 *∆lnYt–3 – 0.029792*∆lnLt–1 – 0.095377*∆lnLt–2 – 
0.073777*∆lnLt–3 – 0.003454*∆lnCt–1 – 0.024636*∆lnCt–2 – 
0.017733*∆lnCt–3 + 0.006457

The cointegration relationship is displayed in Figure 9. 
The zero average line represents a stable and long-term 
equilibrium relationship amongst variables.

The cointegration relationship seems to capture the 1997/1998 
Asian financial crisis, the subsequent 2003–2008 economic 
expansion period, the 2010 financial crises and subsequent 
sluggish growth period fairly well. Testing the above model 
for statistical errors indicates that the R2 is fairly high at 
0.5, the Breusch–Godfrey serial correlation LM test shows 
no serial correlation with p = 0.42, the heteroscedasticity 
test, Breusch–Pagan–Godfrey, indicates that the model 
does not have heteroscedasticity (p = 0.78) and the residuals 
are normally distributed (p = 0.14). The Cumulative Sum 
Control Chart (CUSUM) test also suggests model (parameter) 
stability.

It is also relevant to state that the inclusion of the other night 
light-related variables within the VECM model yielded 
insignificant or spurious results. For example, the inclusion 
of the top-coded cells (i.e. the number of pixels that are the 
highest light with DN 62 and 63) and/or a quadratic term did 
not significantly contribute to the performance of the model. 
On the contrary, there were no statistically significant 
differences in using total GDP compared to GDP per capita. 

The study will make use of the autoregressive distributed lag 
(ARDL) model methodology in an attempt to verify the 
results of the VECM model. Ghouse, Khan and Rehman 
(2018) state that, in an ARDL model, the dependent variable 
is expressed by the lag and current values of the independent 
variable and its own lag value. The ARDL model normally 
starts from a reasonably general and large dynamic model 
and progressively reducing its mass and altering variable by 
imposing linear and non-linear restrictions (Charemza & 
Deadman 1997). The ARDL model is one of the most general 
dynamic unrestricted models in econometric literature.

A generalised ARDL (p, q) model can be specified as:

Yt j jYt jXt jt0 1 1
i

q

i

p

01

∑∑γ δ β ε= + − + − +
==

p ≥ 1, q ≥ 0, for simplicity assume that the lag order q is the 
same for all variables in the K × 1 vector xt. b and d are 
coefficients, δ is the constant and εjt is a vector of the error 
terms. Yt is the real GDP per capita at period t, X is the total 
light intensity at period t (Lt) and the number of pixels that 
are dim with DN 0–5 at period t (Ct).

Estimating the generalised ARDL model using the same 
variables as within the VECM model (and using the 
logarithm format) suggests the use of an ARDL (4.0.0) 
model. The optimal lag structure was derived from the 
Akaike Information Criteria (AIC).

Testing the model for possible cointegration yields an F-test 
statistic value (5.41) higher than the upper bound I (1) up to 
the 2.5% level. It is, therefore, possible to reject the null 
hypothesis of no cointegration. 

The cointegration of long-term equation (unrestricted 
constant and no trend) is given as:

EC = lnYt – 0.5897*lnLt + 0.0282*lnCt

or 

lnYt–1 = 0.5897*lnLt–1 – 0.0282*lnCt–1 + ect–1

(p = 0.000) (p = 0.802) (ec is error correction term)

The cointegration coefficient (ecm) is estimated at −0.185336 
with a p-value of 0.005, suggesting that the ecm derived 
from the ARDL model is indeed statistically significant. 
The cointegration graph is displayed in Figure 10. There 
seems to be significant similarities between the cointegration 
relationship between the VECM (Figure 9) and ARDL 
(Figure 10) models. Testing the model for statistical errors 
indicates that the R2 is fairly high at 0.98, the Breusch–
Godfrey serial correlation LM test shows no serial correlation 
with p = 0.09, the heteroscedasticity test, Breusch–
Pagan–Godfrey, indicates that the model does not have 

FIGURE 9: Cointegration relationship, vector error correction model.
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FIGURE 10: Cointegration relationship, autoregressive distributed lag model.
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heteroscedasticity (p = 0.79) and the residuals are normally 
distributed (p = 0.55). The CUSUM test also suggests model 
(parameter) stability.

The estimated ARDL model is, therefore: 

∆lnYt = 0.509056 – 0.185336*lnYt–1 + 0.109285*lnLt** 
– 0.005218*lnCt ** + 0.871893*∆lnYt–1 – 0.195321*(lnYt  
– (0.58965647* lnLt–1 – 0.02815474* lnCt–1) + 0.554340*∆lnYt–3)

Figure 11 shows the actual GDP per capita versus the static 
forecasted GDP per capita using the VECM and ARDL model. 
The results seem very promising.

Conclusions
This study investigates the economics application of the 
remote sensing of NTL emissions using satellite technologies 
within a South African context. 

The literature on the use of remote sensing NTLs seems to 
support its use in many different fields of study, including 
economics. A growing number of articles are being published. 
The use of satellite data seems to be common practice by now 
and can be a very useful proxy for several economic variables 
at a global, national and sub-national level, including GDP 
and population. This is even more relevant for countries 
where there is a lack of reliable official data and statistics 
(Coetzee 2019).

There is a continuous series of NTLs data since 1992 available. 
Data from 1992 to 2013 are generated from the DMSP–OLS 
system, whilst data from 2012 to present are generated by the 
new SNPP–VIIRS system. Although not perfectly compatible, 
it is possible, through some inter-calibration techniques, to 
link the two datasets. The data are subject to onboard 
manipulation procedures to ensure the end data only contains 
man-made or artificial night light.

This article demonstrates how many different applications 
of remote sensing NTLs may be developed. The data can be 
visually displayed giving unique insights into the spatial 
nature and characteristics of a country and/or any sub-

national region up to a 1 km² area. The data can also be 
used in various statistical analyses, for example, comparing 
the light intensity and consequently human and economic 
activity of various countries and/or sub-national regions 
up to a 1 km² area. It is also possible to visually and/or 
statistically display trend behaviour within a spatial 
context.

The methodology used in this study involves estimating 
both a VECM and ARDL model that map light growth into a 
proxy for GDP growth. The use of VECM and ARDL models 
is well known and easily applied. Both the VECM and ARDL 
model point to a long-term cointegrating relationship 
between GDP (in this case GDP per capita) and total light 
intensity of NTLs. A statistically significant short-term error 
correction term could, however, not be established through 
the VECM. On the contrary, a statistically significant 
short-term error correction term was derived through an 
ARDL model. The combined results suggest that indeed a 
statistically significant long-term relationship exists between 
GDP and night light emissions, whilst it is plausible that a 
short-term relationship also exists. Nonetheless, the possible 
application of NTLs from an economic viewpoint seems both 
desirable and effective.

The results of the study suggest that satellite remote sensing 
technologies hold lots of promise and opportunities in terms 
of the field of economics. Satellite night-lights data seem to be 
a useful proxy for economic activity at temporal and 
geographic scales for which traditional data are of poor 
quality or are unavailable. It, therefore, contributes to our 
understanding of the spatial and temporal behaviour and 
trends in economic activity. As a policy proposal, it is 
suggested that the use of satellite remote sensing technologies 
be included in the official statistical frameworks and 
methodologies currently being utilised to produce official 
economic statistics.
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